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Abstract
Scientists aim to extract simplicity from observations of the complex world. An important component of

this process is the exploration of data in search of trends. In practice, however, this tends to be more of an art
than a science. Among all trends existing in the natural world, one-dimensional trends, often called sequences,
are of particular interest as they provide insights into simple phenomena. However, some are challenging to
detect as they may be expressed in complex manners. We present the Sequencer, an algorithm designed to
generically identify the main trend in a dataset. It does so by constructing graphs describing the similarities
between pairs of observations, computed with a set of metrics and scales. Using the fact that continuous trends
lead to more elongated graphs, the algorithm can identify which aspects of the data are relevant in establishing a
global sequence. Such an approach can be used beyond the proposed algorithm and can optimize the parameters
of any dimensionality reduction technique. We demonstrate the power of the Sequencer using real-world data
from astronomy, geology as well as images from the natural world. We show that, in a number of cases, it
outperforms the popular t-SNE and UMAP dimensionality reduction techniques. This approach to exploratory
data analysis, which does not rely on training nor tuning any parameter, has the potential to enable discoveries
in a wide range of scientific domains.
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1. Introduction

“One of the principal objects of theoretical research is to
find the point of view from which the subject appears in the
greatest simplicity”, wrote Josiah Willard Gibbs in 1881. The
early phase of this process often involves exploratory data
analysis, i.e. a search for patterns in a dataset without the
benefit of guidance from theory. Unfortunately, data can ap-
pear complex and might not allow underlying trends to be re-
vealed straightforwardly. Additional challenges include high
dimensionality, the presence of noise, and ever-growing data
volumes, all of which prevent efficient visualization of the
data and require mathematically guided exploration.

Dimensionality reduction techniques, from Principal Com-
ponent Analysis (PCA; Pearson 1901) to the more recent t-
Distributed Stochastic Neighbor Embedding (t-SNE; van der
Maaten & Hinton 2008) and Uniform Manifold Approxi-
mation and Projection for Dimension Reduction (UMAP;
McInnes et al. 2018), provide powerful ways to address some
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of these limitations (Van Der Maaten et al. 2009; Lee & Ver-
leysen 2010; Venna et al. 2010). However, scientific work
does not end once dimensionality reduction algorithms have
been applied to a dataset. Rather, it only begins. Extract-
ing simplicity through the identification of interesting trends
critically relies on user input and judgement. Domain knowl-
edge informs important decisions: the choice of coordinates,
the scale to focus on, the metric to use to compare objects,
etc. In addition, when the size or dimensionality of data ob-
jects is large, such is the case for images, spectra or time
series, analyses are typically performed on extracted features
or summary statistics rather than on measured values or pix-
els. This decision is critical in the exploration process since a
poor choice of summary statistics or relevant features might
prevent the detection of interesting trends in the data. Finally,
most dimensionality reduction algorithms depend on param-
eters, and changing them can dramatically affect the result-
ing representation (Wattenberg et al. 2016; McInnes et al.
2018; Baron 2019). Thus, a crucial part of the scientific ex-
ploration process is devoted to understanding which observ-
ables or summary statistics to investigate, which method to
pick, and which parameter values to use, in order to obtain
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the most interesting results. In many cases, we lack a well-
defined metric to guide these decisions (e.g., Lee & Verley-
sen 2010; Zhang et al. 2011; Baron 2019). Without theoreti-
cal guidance, trial and error is usually the adopted strategy. Is
it possible to perform these tasks in a way that will automat-
ically and robustly identify the existence of a simple trend in
an apparently complex dataset? Is it possible to operate di-
rectly on the raw data, without specifying which observables
or summary statistics to use?

When trying to understand a dataset, one attempts to ex-
tract meaning by building a generic and concise represen-
tation of it. For the representation to be generic, it should
be invariant to coordinates transformation and deformations.
Meaningful trends are topological properties of the data, i.e.
aspects of the data manifold that are not affected by de-
formation (Carlsson 2009). For example, clusters can of-
ten be defined and interpreted, irrespective of the choice of
coordinates. Many cluster finding algorithms are available
and widely used (e.g., Ward 1963; MacQueen 1967; Yizong
Cheng 1995; Ester et al. 1996; Rodriguez & Laio 2014).
However, in many cases, we expect observed phenomena to
exhibit a continuous change in their properties as a function
of a leading, possibly unknown, driving parameter. In other
words, we often expect to find sequences – they abound in the
natural world and, especially, in scientific measurements. Al-
though they are essentially one-dimensional trends, they are
often challenging to find as they can be expressed in complex
manners.

In this paper we present an algorithm to automatically de-
tect sequences in datasets. It uses information about the
shape of the graph describing the similarities between the
objects and exploits the fact that sequences give rise to elon-
gated graphs. Following this approach, it is possible to con-
sider different representations of the data and, for each of
them, quantify the degree to which a continuous trend ex-
ists. We show that this method can also be used to optimize
some of the parameters or certain arbitrary choices involved
in dimensionality reduction techniques aimed at detecting se-
quences. Importantly, this search can be performed directly
on the pixels or measured values, as opposed to user-defined
observables or restrictive summary statistics. Therefore, our
approach enables a more generic search for continuous trends
in arbitrary datasets.

2. The signature of a continuous trend

Data acquisition often provides us with a collection of ob-
jects that are not necessarily ordered in a meaningful man-
ner. If these objects follow an underlying trend due to the
variation of an intrinsic parameter, it should be possible to
order the set meaningfully. If the variation of this parame-
ter leads to a continuous change of observables, the ordered
set should minimize the cumulative differences between con-

secutive objects. Finding the ordering leading to such mini-
mization is therefore expected to reveal the leading trend in
a dataset. By doing so, we face several challenges: which
aspects of the data should be considered? Which pixels carry
relevant information? How to meaningfully define similari-
ties between them?

To address these questions, we propose the following ap-
proach: let us consider a collection of N objects and let us
first assume that we have a useful metric allowing us to esti-
mate the similarity (or equivalently a distance) between each
pair of objects. The corresponding adjacency matrix repre-
sents a fully-connected graph, where each object in the orig-
inal dataset is represented by a node in the graph, and the
weights of the edges that connect the nodes represent the dis-
tances between the objects. This structure encodes all the
possible trajectories within the dataset.

Within this set, some trajectories are of special interest:
those that connect all the nodes and minimize the total dis-
tance accumulated along them1. We can find such a trajectory
by finding the minimum spanning tree (MST) of our graph,
the subset of the edges in a fully-connected graph that con-
nects all the nodes together, without any cycles, and with the
minimum possible total edge weight (e.g., Kruskal 1956). If
each edge in the original fully-connected graph has a dis-
tinct weight, then the minimum spanning tree is unique. The
shape of the resulting tree carries valuable information on the
topological properties of the dataset. In particular, it can be
used as an indicator of the degree to which a sequence exists
in the dataset. In Figure 1 we show examples of minimum
spanning trees for three scenarios. The left panel shows the
minimum spanning tree of a random graph. The middle panel
shows the minimum spanning tree of a dataset with a noisy
sequence, and the right panel shows the minimum spanning
tree of a dataset with a perfect sequence. The existence of a
continuous trend leads to a more elongated minimum span-
ning tree. Therefore, the minimum spanning tree elongation
can characterize the existence of a trend underlying a collec-
tion of objects.

When doing exploratory data analysis, one typically does
not know a-priori how to meaningfully “look” at the data.
Which similarity measure will be informative? On which
scales will we find relevant information? Interestingly, we
can address these questions by simply considering, in each
case, the shape of the corresponding minimum spanning tree.
In other words, we can automatically find the parameters
that are most sensitive to the existence of a simple trend in
the dataset. For a diverse enough set of distance metrics

1 This is not equivalent to solving the Traveling Salesman’s Problem. The
Traveling Salesman’s Problem is more specific and aims at finding a tra-
jectory which starts and ends at the same node and visits all the others only
once.
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Figure 1. Minimum spanning trees for three sets of 50 objects for which the similarities range from random (left) to continuous (right). Each
panel shows the corresponding elongation parameter� (Eq. 3) which can be used to characterize the degree to which a continuous trend is
detected.

and scales, this automatic process has the capacity to reveal
trends in a generic manner. These trends can be intrinsic to
the objects in the sample and/or extrinsic and driven by ob-
servational effects.

3. Algorithm description

We now provide a description of the Sequencer algorithm
following the key principles outlined in the previous section.
Our goal is to order a collection ofNobj objects withNpix

values. We will describe each object asX j
i , with j = 1

to Nobj and i = 1 to Npix . To characterize and extract a
sequence underlying such a collection of objects, we proceed
in two steps:

1. For a list of metrics and scales, we compute the cor-
responding graphs describing the dataset and quantify
the elongation of their minimum spanning trees;

2. We aggregate the results to form a new graph summa-
rizing the relevant information and extract an ordered
list of objects from it.

As we will demonstrate, this can reveal the trend character-
izing the leading variation among the objects in many cases.
Such a trend is often meaningful.

3.1. Distance metrics & scales

As described above, we can achieve a meaningful order-
ing of the dataset by minimizing the similarity or distance
between adjacent objects. Doing so requires the choice of
a distance measure. In order to be generic, we include sev-
eral commonly-used metrics. This will allow the algorithm
to consider various aspects of the data and its features. Simi-
larly, we consider a list of scales on which the relevant infor-
mation can be distributed.

By default, we use the following metrics: (i) the Eu-
clidean Distance, (ii) the Kullback-Leibler Divergence (KL

Divergence; Kullback & Leibler 1951), (iii) the Monge-
Wasserstein or Earth Mover Distance (EMD; Rubner et al.
1998), and (iv) the Energy Distance (Székely 2002). The
de�nitions and properties of these metrics are described in
the Appendix. If desired by the user, this list can be ex-
panded to better suit a particular application. We note that
this default set includes metrics with different properties: the
Earth Mover Distance and Energy Distance are sensitive to
the magnitude of displacements along thei coordinate. This
is important with continuous measurements, for example per-
formed as a function of space or time, for which the deriva-
tive with respect toi carries relevant information. In contrast,
the Euclidian Distance and the KL Divergence treat the dif-
ferent pixels ofX i as different dimensions and are insensitive
to index shuf�ing. They provide a qualitatively different view
of the information content.

The observable signature of an underlying trend can exist
on different scales which may not be known a-priori. In order
to be generic, it is important to consider a range of scales. To
do so, we decompose each objectX into a series of contigu-
ous segments whose length is given byNpix =2l . This results
in an ensemble of segments which allows us to look at each
data object hierarchically, starting from its entirety (l = 0 )
and creating a binary tree such that the deepest scale corre-
sponds to about twenty pixels. Thus, for a given metrick and
scalel , the object is split into2l segments, and we refer to
each segment using the indexm. The maximum depth or the
ways in which the data is decomposed can be modi�ed by
the user if need be.

3.2. Finding the main sequence

Our goal is to look at the data for each metrick, scalel
and segmentm, and estimate the level to which an underly-
ing trend is present. To do so, we proceed as follows. First,
for each scalel and each segmentm, we �rst normalize each
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Algorithm 1: Sequencer pseudo-code

set list of metrics;
set list of scales;
for each metrick do

for each scalel do
set list of segments;
split objectsX into m segmentsX m ;
normalize each segment to have a sum of 1;
for each segmentm do

D klm = distance matrix(X m );
MST klm = Minimum Spanning Tree(D klm );
� klm = aklm =bklm = elongation (MSTklm );

end
D kl = � -weighted average of individualD klm ;
MST kl = Minimum Spanning Tree(D kl );
� kl = elongation(MST kl );

end
end
P = combined proximity matrix populated by� -weighted
edges of MSTkl ;

for each pair of objectsi; j do
D combined

ij = 1 =Pcombined
ij ;

end
MST = Minimum Spanning Tree(D );
Sequence = Breadth First Search path(MST );

object such that the sum over its components is one. We then
extract geometrical properties of the set of graphs character-
izing similarities between all pairs of objects:

� Graph minimum spanning tree: for each metrick,
scalel and segmentm, we compute aN 2

obj distance matrix
D klm which represents a fully-connected graph. We then
compute its minimum spanning tree using Kruskal's algo-
rithm (Kruskal 1956). It gives us a set ofk � l � m trees
with Nobj nodes. The key information on the presence of an
underlying trend resides in the shape of these graphs.

� Graph length: The least connected node,j LC , of the
minimum spanning tree is expected to belong to its longest
branch. To identify it, we compute the closeness centrality
of each node (Freeman & Freeman 1978) and select the one
with the smallest value. We then compute the shortest path
� klm (j LC ; j ) between this node and every other node in the
minimum spanning tree. The shortest path is a unitless inte-
ger counting the minimal number of edges between the two
nodes (see the Appendix for additional details). We then de-
�ne the major axis of the minimum spanning tree to be the
average of the shortest paths over all nodes:

aklm = h� klm (j LC ; j )i node j : (1)

� Graph width: Each node in the graph can be as-
signed to a levelq which corresponds to a unique value of
� klm (j LC ; j ). That is, the shortest path between all the
nodes that are assigned to the levelq and the least connected
node: � klm (j LC ; j ) = � q (see section 7.2 for an illustra-

tion). The width of a levelq, � ?
klm (q), is de�ned as the

number of nodes that are assigned to it. We use the aver-
age of this quantity as an estimate of the average half width,
or minor axisb, of the minimum spanning tree:

bklm =
1
2

h� ?
klm (q)i level q (2)

� Graph elongation: for each metrick, scalel , and seg-
mentm, we then de�ne the elongation of the minimum span-
ning tree as its average height divided by its average width:

� klm = elongation(D klm ) =
aklm

bklm
: (3)

This quantity can then be used to characterize the level to
which the signature of a continuous trend is apparent in a
given segment of the objects, through a given metric and on
a given scale. Importantly, by being a ratio of numbers of
edges, this parameter can be de�ned irrespective of the met-
ric used. It is a summary statistics describing geometrical
properties of the minimum spanning tree and, as a result,
topological properties of the data.

� Aggregation of scales and metrics: each minimum
spanning tree represents a sequence viewed through a given
metrick and scalel of a segment of the datam. The elonga-
tion � klm of its corresponding minimum spanning tree car-
ries information on the level at which an underlying trend is
detected. We can �rst combine the information obtained for
all segments by creating a global distance matrixD kl using
an elongation-weighted average of our set of minimum span-
ning trees:

D kl = h� klm : D klm i m : (4)

This provides us withk � l different “views” of the data,
which we can attempt to aggregate. Here we need to keep in
mind that different metricsk will result in distance matrices
D kl with different units. To meaningfully combine informa-
tion obtained from different metrics, we will only extract the
topological information of the resulting minimum spanning
trees, as given by their edge counts, and use an elongation-
weighted average to create a “proximity” matrix:

P combined = h� kl : # of edges(MST(D kl )) i kl : (5)

We set all the elements which are not populated by the
edges of the minimum spanning trees to zero (no connec-
tion between the corresponding nodes), and the elements on
the diagonal to in�nity (the proximity of a node to itself
is in�nite). This then allows us to de�ne a combined dis-
tance matrix whose elementsi; j are de�ned asD combined

ij =
1=Pcombined

ij . This distance matrixD combined provides us
with a multi-scale and multi-metric characterization of the
dataset. We then compute its minimum spanning tree and
corresponding elongation.
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